Fuels/Chemicals from Syngas Breakout

Model Development Issues

Participants:

Edward Brandner

Santosh Gangwal

James Tilton

Dragomir Bukur

Lynn Layman

Jack Halow

Issac Gamwo

Madhava Syamlal

Jerry Boyle

Models needed for:

- A) Separation devices (Fe catalyst/wax)
- B) Slurry bubble column reactor (SBCR)
- C) Wax upgrading reactor
- D) Reliability & safety
- 1. Technology Module Barriers:
- A) Catalyst deactivation and aging (fouling, poisoning, sintering)
- B) Kinetic rate data and model
- C) Catalyst selectivity
- D) Catalyst/wax separation and catalyst attrition
- E) Uncertainty in hydrodynamic scale-up
- F) Feedstock and product mix flexibility
- G) Inadequate knowledge of physical properties and phase equilibrium
- H) Absence of a well validated SBCR model

Most important design and control models.

Erosion is not much of a problem

- 2. Model Priority:
- Fe catalyst aging behavior
- SBCR
- 3. Model usage, provide guidance to technology developers:
- A) Catalyst replacement rate including cost
- B) Design and optimization of catalyst and reactor

Speed vs. Accuracy, increasing capital costs are pushing smaller margins of error:

- A) In equipment design stage of important component, 1 week
- B) Design of less important components, instantaneous

- C) Plant simulations, 1 minute
- D) Control, real time
- E) Equipment size accuracy +/- 20%
- F) Temperature better than 10% accuracy
- 4) Barriers to Model Development:
- A) Slurry Bubble Column Reactor:

Need experimental data on at least 4"

B) Catalyst aging

Develop a accelerated aging test (e.g. simulate 3 years operation is 3 weeks)

C) General

Validation of the computational model using scale-up data

Fast computers (e.g. to test grid independence of the results)

Need better constitutive models

Strategies:

- A) Establish consortium for attacking specific problems
- B) Establish challenge problems (e.g. experimental testing and synthetic problem)
- 5. State-of-Art Models:
- A) IIT/NETL code for slurry bubble column
- B) Dudokovic at Washington University based on CFDLIB (from LANL)
- C) Krishna University of Amsterdam based on CFX
- D) L-S Fan U of Ohio
- E) Flow sheet models: ASPEN+, Hysys
- F) CFD packages: Fluent, CFX
- G) CAD: ProE, Ansys, Autocad, Intergraph
- 6) Importance to Technology Developers
- A) Economic/risk, cfd codes, process engineering, control, CAD, integration/portability
- B) Internet based concurrent engineering, immersive visualization

Information Exchange & Communication

Communication Issues:

- A) Survey modeling needs of technology developers
- B) Publicly available models of components (performance and cost)
- C) Better information exchange between experimentalist and modelers
- D) Better information exchange among modelers
- E) Intellectual property concerns hinder communication
- 1. Plans for information exchange (Who will fund efforts?):
- A) Smaller work groups with government, academia and industry
- B) On DOE projects force teams to include both modelers and developers
- C) Have Round Robin testing of models and experiments

- 2. Intellectual Property Concerns:
- A) Resolve IP issues upfront within consortium

Government Role

- 1. Software needs:
- A) RFP requires every technology developer provide model of that technology
- B) Models for catalyst design and SBCR
- 2. Balance Between New vs. Old:
- A) Fund basic science and encapsulate them in constitutive laws
- B) Leave rigorous numerical algorithm development to industry
- 3. Near/Long Term & High/Low Risk Efforts?
- A) Fund long term and high risk:
- B) High Risk/Near Term (7 year) Slurry Bubble Column Reactor Model, Fe catalyst model
- C) High Risk/Long Term (20 year): Membrane separation model
- D) High Risk/Long Term: Syngas to hydrogen models (model for chemistry & S tolerant catalyst)